
The vascular endothelial growth factor (VEGF) fam‑
ily comprises several members, of which VEGF‑A 
(also termed VEGF) has received the most attention1. 
Historically, VEGF was discovered in mammals as 
a growth factor for endothelial cells that is capable of 
stimulating the formation of blood vessels (angiogen‑
esis). From an evolutionary perspective, however, this 
polypeptide originally emerged in the CNS of primitive 
organisms that lacked an established vasculature, sug‑
gesting a vessel-independent activity. Indeed, growing 
evidence indicates a diverse range of effects of VEGF and 
its family members on neural cells during development 
and in adulthood2.

Here, we provide a brief overview of the functions 
of the VEGF family in the developing and adult nerv‑
ous system. We then review current knowledge on the 
role of VEGF in neurological diseases, and summarize 
approaches that target VEGF in order to treat neuro‑
logical disorders. The role of the VEGF family in CNS 
oncology is beyond the scope of this article, and we refer 
the reader to recent reviews on this topic3–5.

The VEGF family
VEGF (also known as VEGF‑A or vascular permeabil‑
ity factor, but henceforth referred to as VEGF in this 
Review) is the founding member of a family of growth 

factors. In mammals, the family comprises VEGF, 
VEGF‑B, VEGF‑C, VEGF‑D, VEGF‑E and placental 
growth factor (PlGF)1 (FIG. 1). VEGF family members 
bind to cell surface receptor tyrosine kinases termed 
VEGFR‑1, VEGFR‑2 and VEGFR‑3. Several members 
also bind to non-tyrosine kinase receptors of the neuro
pilin (NRP) family, NRP‑1 and NRP‑2 (also receptors 
for semaphorins), which function as co‑receptors for the 
VEGFRs. VEGF binds to VEGFR‑1, VEGFR‑2, NRP‑1 
and NRP‑2; VEGF‑B binds to VEGFR‑1 and NRP‑1;  
PlGF binds to VEGFR‑1, NRP‑2 and NRP‑1; and 
VEGF‑C and VEGF‑D interact with VEGFR‑3, 
VEGFR‑2, NRP‑1 and NRP‑2 (REF. 1) (FIG. 1).

VEGF is best known for its role in angiogenesis, stimu
lating endothelial cell proliferation and migration and 
increasing vascular permeability2. VEGF family mem‑
bers have been also implicated in lymphangiogenesis 
(formation of lymphatic vessels), monocyte recruitment, 
haematopoiesis, and proliferation or survival of non- 
vascular cell types expressing VEGFRs or NRPs, includ‑
ing neuronal cells1,2,6 (FIG. 1). VEGF and VEGFR family 
members exert their effects via downstream signalling 
pathways, including the MEK–MAPK pathway (prolifer‑
ation and migration), the PI3K–Akt pathway (survival), 
and the Src–eNOS pathway (permeability). Pathways 
involved in specific neurological diseases are indicated 
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in the respective sections below. For a general over‑
view of downstream VEGF family pathway mediators,  
we refer the reader to recent reviews1,7,8.

Besides the actions of VEGF and its family members 
on blood vessels, a growing body of literature describes 
direct effects of these molecules on neural cells during 
brain development and in normal brain function (see 
below). In addition, VEGF has numerous roles in the 
diseased nervous system, including multiple direct ben‑
eficial effects on various types of neural cells2 (FIG. 2), 
as well as effects on the vasculature. The latter effects 
can be beneficial by promoting CNS perfusion6 but, as 
a permeability factor9, VEGF at high levels can compro‑
mise CNS homeostasis by inducing blood–brain barrier 
(BBB) dysfunction2,10.

From an evolutionary perspective, VEGF homo‑
logues are present in cnidarians that lack a vascular 
system11. These organisms express VEGF during neural 
development, suggesting that VEGF originally arose as a 
neural factor and was later co‑opted for vessel formation. 
Thus, VEGF is a prototypical neurovascular signal that 
regulates both vascular and neural systems.

VEGF in the developing nervous system
VEGF has a dual role in CNS development: it regulates 
the formation of blood vessels, and it also guides neu‑
ronal migration and axonal pathfinding2,12,13. VEGF 
is a master regulator of CNS blood vessel formation. 
Secreted by neural tube cells, VEGF first induces de novo 
formation of a perineural vascular plexus, and later in 
development it orchestrates the ingrowth of vessel 
sprouts into the neural tube to form the vasculature of 
the brain parenchyma14,15. Consistent with findings that 
VEGF is crucial for brain vessel formation and brain 
growth16,17, inhibition of periventricular vessel growth 
via VEGF blockade during the third trimester of gesta‑
tion was found to cause striatal periventricular apoptosis, 
depletion of cortical GABAergic interneurons, and ven‑
tricular enlargement18. These features are all hallmarks 
of periventricular leukomalacia, a form of white matter 
brain injury in preterm infants. During embryogenesis, 
VEGF also regulates the formation of brain collaterals, 
which determine the outcome of ischaemic brain insults 
(see below)19,20.

VEGF signalling guides neuronal migration and 
axon pathfinding independently of its vascular effects. 
A gradient of extracellular matrix-bound VEGF con‑
trols the migration of cerebellar granule cells towards 
their final destination through VEGFR‑2 signalling in 
granule cells21. In addition, migration of facio-branchial 
motoneurons in the hindbrain is regulated by VEGF 
via the co‑receptor NRP‑1. Notably, migration of these 
neurons is misguided in a mouse model of Charcot–
Marie–Tooth disease type 2D (CMT2D), a peripheral 
neuropathy in which mutated glycyl-tRNA synthetase 
(GlyRS) aberrantly binds to NRP‑1 and inhibits  
VEGF–NRP‑1 signalling22,23. VEGF–NRP‑1 can guide 
axons of retinal ganglion cells as they cross the midline 
at the optic chiasm24, and VEGF–VEGFR‑2 signalling in 
spinal commissural neurons regulates midline crossing of 
axons in the ventral spinal cord25.

VEGF in the adult nervous system
In the normal healthy nervous system, VEGF regu‑
lates microvascular density, controls vessel permea‑
bility, and maintains endothelial cell fenestration in 
the choroid plexus10. In addition, VEGF stimulates 
neural stem cell (NSC) proliferation and promotes 
neurogenesis (BOX 1). In neurological disease, VEGF 
affects various types of neural cells (FIG. 2): it safeguards 
stressed neurons via a neuroprotective survival effect, 
stimulates neurogenesis and neuronal differentiation 
(BOX 1), induces axon extension and branching, and pro‑
motes synaptic plasticity2. In addition, VEGF enhances 
migration of oligodendrocyte precursor cells, increases 
migration and proliferation of Schwann cells, stimulates 

Key points

•	Vascular endothelial growth factor (VEGF) has been implicated in the aetiology and
treatment of various neurological diseases

•	VEGF exerts effects on multiple cell types in the nervous system, including 
endothelial cells, neurons, astrocytes, microglia, oligodendrocytes and Schwann cells

•	VEGF protects neurons and fosters neurogenesis, and reduced VEGF levels contribute
to neurodegenerative disorders

•	VEGF can improve brain perfusion, partly by promoting angiogenesis, but 
pathological VEGF levels induce blood–brain barrier breakdown and vessel leakage

•	Preclinical studies indicate that VEGF administration is beneficial in
neurodegenerative diseases, peripheral neuropathies and epilepsy

•	VEGF inhibition is approved as a treatment for neovascular ocular diseases, and might
be beneficial in other neurological disorders involving BBB breakdown or excessive 
angiogenesis

Figure 1 | The VEGF family of growth factors. The figure depicts the vascular 
endothelial growth factor (VEGF) isoforms VEGF (also known as VEGF‑A), VEGF‑B, 
VEGF‑C, VEGF‑D and placental growth factor (PlGF), and their binding to the receptor 
tyrosine kinases VEGFR‑1, VEGFR‑2 and VEGFR‑3 and the co‑receptors neuropilin‑1 
(NRP‑1) and NRP‑2. Major effects on receptor-expressing cell types in the vasculature 
and CNS are indicated. sVEGFR‑1 can trap VEGF‑A, VEGF‑B and PlGF and reduce their 
biological actions. sVEGFR‑1, soluble VEGFR‑1.
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expression of trophic factors by astrocytes, and triggers 
proliferation, survival and migration of astrocytes and 
microglia2.

VEGF also has beneficial vascular effects, including 
improvement of perfusion via vasodilation or angiogen‑
esis6 (FIG. 2). Also, low maintenance levels of VEGF are 
necessary for endothelial cell survival and the integrity 
of the BBB, a vascular barrier that safeguards the brain 
against harmful blood-borne substances6,26. However, 
VEGF is a vascular permeability factor9 and, at high 
levels, can compromise CNS homeostasis through dis‑
ruption of the BBB2,10. BBB dysfunction can aggravate 
neurological diseases via several mechanisms, including 
leakage of neurotoxic proteins, which results in the pro‑
duction of reactive oxygen species and inflammation; 
accumulation of waste products due to defective dis‑
posal; deficient nutrient transport; and entry of inflam‑
matory cells, leading to immune responses27. When its 
levels are highly elevated, VEGF can cause excessive for‑
mation of new leaky vessels, and bleeding2. VEGF also 
stimulates angiogenesis in conditions of inflammation or 
cancer in the brain (not discussed further here).

VEGF in neurodegenerative disease
Amyotrophic lateral sclerosis. Amyotrophic lateral scle‑
rosis (ALS) is an adult-onset incurable disease charac‑
terized by progressive degeneration of motor neurons 
in the spinal cord, brainstem and motor cortex, lead‑
ing to generalized paralysis, and death 3–5 years after 

diagnosis28. Around 10% of cases of ALS are caused by 
gene mutations, most commonly affecting the C9orf72, 
SOD1, TARDBP or FUS genes, although more than 40  
ALS-associated genes have been identified.

The precise molecular mechanisms underlying ALS 
pathogenesis are elusive, but possible mechanisms 
include perturbations in protein stability and degra‑
dation, RNA biogenesis, cytoskeletal architecture and 
function, and mitochondrial function, along with excito
toxicity and insufficient neurotrophic signalling28,29. 
Emerging evidence indicates that motor neuron degen‑
eration is caused not only by motor neuron-intrinsic 
defects, but also by alterations in surrounding cell types, 
including astrocytes, microglia, oligodendrocytes and 
endothelial cells28,30,31. VEGF was first implicated in ALS 
when mice with reduced VEGF levels (Vegfδ/δ mice) were 
found to develop adult-onset progressive motor neuron 
degeneration, reminiscent of ALS32. Lowering VEGF  
levels in SOD1G93A mice, a model of familial ALS, accel‑
erates disease onset and shortens lifespan33. In humans, 
a single nucleotide polymorphism (−2578AA) in the 
VEGF gene, which is associated with low VEGF levels, 
increases ALS susceptibility34.

The low VEGF levels in Vegfδ/δ mice could contribute 
to motor neuron degeneration via two possible mech‑
anisms. First, reduced vascular perfusion of the CNS, 
possibly attributable to defective regulation of periph‑
eral resistance arteries, might evoke chronic CNS ischae‑
mia32,35 (FIG. 3a). BBB breakdown due to endothelial cell 

Figure 2 | VEGF in the CNS. Vascular endothelial growth factor (VEGF) has multiple roles in the CNS, both by affecting 
various neural cells directly, and by promoting vascular perfusion, transport of immune cells, and survival of cerebral blood 
vessel endothelial cells. VEGF also stimulates the production of neurogenic growth factors by endothelial cells. Permission 
obtained from Macmillan Publishers Ltd © Zacchigna, S. et al. Nat. Rev. Neurosci. 9, 169–181 (2008).
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dysfunction, which could affect CNS homeostasis, has 
been detected in rodents and patients with ALS31,36. The 
idea that reduced VEGF levels contribute to this phe‑
nomenon is plausible, as maintenance levels of VEGF 
are required for endothelial cell function and survival, 
but it remains to be tested6.

Second, VEGF exerts direct neurotrophic effects, so 
reduced levels of this protein deprive motor neurons of 
neuroprotection, thereby compromising survival (FIG. 3a). 
In vitro, VEGF stimulates motor neuron survival in both 
normal and stress conditions, including in response to 
SOD1G93A expression32,37–42. These effects are mediated 
by VEGFR‑2 activation, leading to PI3K–Akt signalling, 
which in turn inhibits p38 MAP kinase phosphorylation, 
thereby preventing Bcl‑2 downregulation and inhibiting 
apoptosis32,37,39,42. In addition, VEGF induces expression 
of the AMPA receptor GluR2 subunit, thereby reducing 
motor neuron vulnerability to glutamate excitotoxic‑
ity41. VEGF, VEGFR‑1 and VEGFR‑2 are expressed by 
spinal motor neurons in mice and humans32,42–44, and  
 neuron-selective overexpression of VEGFR‑2 delays 
disease onset and prolongs survival in SOD1G93A mice, 
further illustrating the direct neurotrophic activity of 
VEGF45. VEGF also exerts pleiotrophic effects on astro‑
cytes, microglia, oligodendrocytes and Schwann cells30 
(FIG. 3), all of which have been implicated in ALS patho‑
genesis. The relevance of VEGF’s effects on these cell 
types in the context of ALS remains to be investigated.

A series of independent studies have highlighted the 
therapeutic potential of VEGF for ALS. Intramuscular 
administration of a VEGF-expressing, retrogradely 
transported lentiviral vector to SOD1G93A mice, as well as 
intracerebroventricular (ICV) delivery of recombinant 
VEGF to SOD1G93A rats, delayed disease onset, slowed 
disease progression, improved motor performance, 

mitigated axonal degeneration and motor neuron loss, 
and extended the lifespan45,46. Even when treatment was 
initiated at the onset of paralysis, disease progression  
was delayed and survival was prolonged. VEGF delivered 
via alternative routes, including neuronal overexpression,  
intrathecal transplantation of NSCs overexpressing 
VEGF, and adeno-associated virus (AAV)-mediated 
expression of VEGF in ventricular cells, was also found 
to be beneficial for SOD1G93A rodents47–49. Interestingly, 
VEGF protein delivered via the ICV route is antero‑
gradely transported along motor axons, a mechanism 
that may support preservation of neuromuscular junc‑
tions (NMJs) in SOD1G93A rats45. Thus, VEGF may also 
act locally in the muscle to preserve NMJ integrity. 
Consistent with this idea, VEGF overexpression in 
muscle improves motor function and extends survival 
in SOD1G93A rats50,51.

Combinatorial VEGF treatment, in particular with 
neurotrophic factors that act on different signalling 
pathways, can result in synergistic therapeutic effects, 
as exemplified by combined intramuscular delivery of 
VEGF and glial cell line-derived neurotrophic factor 
(GDNF) to SOD1G93A rats49,51. Although most preclinical 
studies on VEGF therapy for ALS have been performed 
in mutant SOD1 rodent models, VEGF also reduces 
motor neuron death and prevents motor deficits in rat 
models of excitotoxic motor neuron death40,52, suggest‑
ing that VEGF holds promise for the treatment of spo‑
radic ALS. A phase I clinical trial to evaluate the safety 
of VEGF in patients with ALS has been conducted, but 
was terminated early owing to problems with the infusion 
delivery system (TABLE 1).

VEGF‑B also exerts neurotrophic effects on motor 
neurons. SOD1G93A mice lacking VEGF‑B develop 
more-severe motor neuron degeneration, and interaction 
of VEGF‑B with VEGFR‑1 on motor neurons promotes 
neuronal survival44. Similar to VEGF, ICV infusion of 
VEGF‑B in SOD1G93A rats delays the onset of motor 
deficits, promotes motor neuron survival and increases 
lifespan44. The minimal angiogenic activity of VEGF‑B 
may be beneficial in terms of avoiding undesired  
vascular effects.

Alzheimer disease. Alzheimer disease (AD) is a pro‑
gressive disorder in which neurons of the cerebral cortex 
and hippocampus degenerate, resulting in loss of cog‑
nitive functions, memory, reasoning, movement coor‑
dination and pattern recognition. This common form 
of dementia in elderly individuals is characterized by 
extracellular deposition of amyloid‑β (Aβ) in the brain 
parenchyma. However, Aβ deposits are also detected 
in arterial walls, a condition termed cerebral amyloid 
angiopathy (CAA) that is present in the majority (90%) 
of patients with AD53–56. Further aggravated by vascular 
dysfunction induced by ageing and cardiovascular risk 
factors (hypertension, diabetes and vasculopathy), CAA 
destroys microvascular structure and function, leading 
to loss of BBB integrity and cerebral hypoperfusion, 
along with an inflammatory response, all of which com‑
promises neuronal viability. The resultant hypoperfusion 
not only causes hypoxia but also impairs Aβ clearance 

Box 1 | VEGF in neuronal regeneration

As neurogenesis in the adult brain contributes to the recovery of brain insults173,174, 
efforts are underway to therapeutically increase this process. Vascular endothelial 
growth factor (VEGF) regulates adult neurogenesis through direct effects on neural 
stem cells (NSCs) and/or indirect effects on the vascular NSC niche13. Adult NSCs 
express the receptor VEGFR‑2 (REFS 175–177), and administration of VEGF increases 
NSC proliferation in vitro and in vivo, as well as increasing the generation of newborn 
neurons176–178. In addition, VEGF expression in the hippocampal NSC niche increases 
after stroke or TBI127,179, in association with increased NSC proliferation and 
neurogenesis. Knockdown of VEGF or blockade of VEGFR‑2 in the niche attenuates 
the induction of adult NSC proliferation by TBI127,180, suggesting that VEGF mediates 
this process, at least in part, and that therapeutic VEGF manipulation might further 
increase NSC proliferation and recovery. When VEGF is reversibly overexpressed in 
the hippocampal NSC niche, it increases angiogenesis, and blood vessels remain 
expanded after cessation of VEGF expression. Interestingly, NSC proliferation remains 
elevated for several weeks when VEGF expression ceases, suggesting that VEGF might 
control NSC proliferation via expansion of the vascular niche181.

VEGF also regulates regrowth of damaged peripheral nerve axons to aid recovery of 
sensory and motor function after injury. On nerve damage, macrophages migrate into 
the axonal gap, which is devoid of axons, and secrete VEGF to induce blood vessel 
formation. Schwann cells then use these vessels as tracks to migrate into the axonal gap 
to facilitate subsequent axon regrowth182. Exogenous delivery of VEGF to injured 
nerves further enhances axon regeneration183. Thus, VEGF enhances neuronal 
regeneration after injury indirectly, via blood vessel-dependent mechanisms, and 
possibly also directly.
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(and, hence, further promotes Aβ accumulation), which 
may exacerbate neuronal dysfunction and loss53–55,57–59 
(FIG. 3b).

The effects of Aβ on VEGF-driven blood vessel func‑
tion in AD remain unresolved, as both proangiogenic 
and antiangiogenic effects have been described57,60–62. On 
the one hand, Aβ inhibits VEGF binding to its receptor, 
and suppresses endothelial cell proliferation and sur‑
vival responses to growth factors, including VEGF61,63,64. 
Also, in patients with AD, subnormal VEGF levels have 
been reported, which might aggravate vascular insuf‑
ficiency65–67. On the other hand, VEGF, VEGFR‑2 and 
NRP‑1 are upregulated in the brains of mice and patients 
with AD68, probably owing to the hypoxia that results 
from cerebral hypoperfusion54,58. VEGF might be upreg‑
ulated to compensate for the hypoperfusion, explaining 
why patients and mice with AD show increased vascular 
density in regions around Aβ plaques57,69. These neo
vessels are leaky, however, which disturbs neural homeo
stasis and can cause neurotoxicity62. Whether these 
VEGF-driven vascular alterations are causally involved 
in the pathogenesis of AD requires further study.

Currently, therapy for AD is limited to symptomatic 
treatments56,70,71. To alleviate cerebral hypoperfusion in 
AD, proangiogenic strategies have been explored57,62. 

Figure 3 | VEGF in neurodegenerative disease.  
a | Amyotrophic lateral sclerosis (ALS). Low vascular 
endothelial growth factor (VEGF) levels are a risk factor for 
ALS in humans, and cause ALS-like disease in mice. Low 
VEGF levels impair spinal cord perfusion and cause chronic 
ischaemia of motor neurons, and also deprive these cells  
of vital VEGF-dependent survival and neuroprotective 
signals. Both mechanisms may contribute to the 
adult-onset progressive degeneration of motor neurons, 
with associated muscle weakness and paralysis and, 
ultimately, death. Other neural cell types, including 
microglia, astrocytes, oligodendrocytes and Schwann cells, 
are impaired in ALS, probably contributing to the motor 
neuron degeneration. Permission obtained from American 
Society for Clinical Investigation © Storkebaum, E. & 
Carmeliet, P. J. Clin. Invest. 113, 14–18 (2004). b | Alzheimer 
disease (AD). Recent literature suggests multifactorial 
pathogenesis resulting from BBB dysfunction and chronic 
cerebral hypoperfusion, in combination with deleterious 
effects due to toxic amyloid‑β (Aβ) accumulation in the 
brain parenchyma and blood vessel walls (cerebral amyloid 
angiopathy). Hypoxia enhances VEGF expression, possibly 
leading to a hypervascularization response to relieve 
hypoperfusion. Aβ is reported to inhibit VEGF receptor 
signalling, although some studies also indicate that Aβ 
promotes hypervascularization. We do not yet understand 
the relative importance of these opposing effects of Aβ, or 
whether hypervascularization co‑contributes to disease 
progression. c | Parkinson disease (PD). The healthy brain 
(left) shows an intact BBB, functional dopaminergic 
neurons and normal astrocytes and resting microglia. 
Compromised blood–brain barrier (BBB) integrity 
contributes to the pathogenesis of PD by promoting 
reactive gliosis, resulting in release of VEGF and 
proinflammatory cytokines by activated astrocytes and 
microglia. These events further aggravate BBB disruption 
and promote dopaminergic neuron dysfunction and death.

◀
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Neuron-specific overexpression of VEGF in a mouse 
model of AD partially rescued cerebral vascular loss and 
restored memory behaviour60. Moreover, administration 
of VEGF-releasing nanospheres or VEGF-overexpressing 
mesenchymal stem cells to AD mice promoted neovascu‑
larization, reduced Aβ deposition and improved behav‑
ioural deficits72,73. Furthermore, in a prospective study 
that explored biomarkers for AD in relation to brain 
ageing in individuals with differing severities of cognitive 
decline, elevated VEGF levels in the cerebrospinal fluid 
were associated with improved brain ageing outcomes, 
suggesting that patients with early AD might benefit from 
VEGF treatment74.

Huntington disease. Huntington disease (HD) is caused 
by mutations in the huntingtin gene, and is character‑
ized by progressive dysfunction and neuronal death in 
corticostriatal circuits, resulting in motor impairment, 
cognitive decline, psychiatric disability and, ultimately, 
death70,71. Whether VEGF is functionally involved in 
HD remains unknown, but decreased VEGF levels are 
observed in peripheral mononuclear cells from individu‑
als with this condition75. On the basis of its neurotrophic 
action, VEGF treatment has been explored in HD mod‑
els. Injection of VEGF-releasing hydrogels into the stri‑
atum attenuated motor impairment and reduced striatal 
neuron loss in a rat model of HD76. Similarly, lentiviral 

Table 1 | Trials of VEGF, or VEGF or PlGF blockade, in neurological diseases

Disease Intervention Phase Status ClinicalTrials.gov 
identifier

Sponsor

Peripheral nerve injury Neovasculgen (VEGF165 plasmid) I,II Not yet 
recruiting

NCT02352649 Human Stem Cell Institute, 
Kazan, Russia

Amyotrophic lateral 
sclerosis

sNN0029 (containing VEGF165) I Completed 
2016*

NCT02269436 Newron Sweden AB, 
Stockholm, Sweden

Neuromyelitis optica Bevacuzimab (anti-VEGF mAb) Ib Completed 
2016

NCT01777412 Johns Hopkins University, 
Baltimore, Maryland, USA

Diabetic retinopathy, 
macular oedema

Ranibizumab (anti-VEGF mAb) III Recruiting NCT02130024 Novartis Pharmaceuticals

Diabetic retinopathy THR‑317 (anti-PlGF antibody) I Announced 
for second half 
of 2016

Not applicable Thrombogenics NV

Ziv-aflibercept (VEGF-sequestering protein) II Recruiting NCT02486484 University Hospital, Beirut, 
Lebanon

Ranibizumab (anti-VEGF mAb) II Recruiting NCT02328118 The First People’s Hospital of 
Xuzhou, China

Aflibercept (VEGF-sequestering protein) II Recruiting NCT02320474 University Hospital, Poitiers, 
France

Diabetic macula 
oedema

Ranibizumab and bevacuzimab  
(anti-VEGF mAbs)

IV Recruiting NCT02462304 The University of Hong Kong, 
China

Aflibercept (VEGF-sequestering protein) IV Recruiting NCT07717142 University of Sydney, Australia

Anti-VEGF mAb IV Recruiting NCT02471651 California Retina Consultants

Macular degeneration RTH258 (anti-VEGF mAb) III Recruiting NCT02307682 Alcon Research

Rare VEGF-driven 
ocular diseases

Ranibizumab (anti-VEGF mAb) II Ongoing NCT01908816 Novartis Pharmaceuticals

Non-neovascular AMD Ranibizumab (anti-VEGF mAb) I/II Recruiting NCT02140151 Southern California Desert 
Retina Consultants, MC

Neovascular AMD OPT‑302 (VEGF‑C/D‑sequestering molecule) 
and ranibizumab (anti-VEGF mAb)

I Recruiting NCT02543229 Opthea Pty Ltd

X-82 (VEGFR/PDGFR inhibitor) and 
aflibercept (VEGF-sequestering protein)

II Recruiting NCT02348359 Tyrogenex

Sirolimus (mTOR inhibitor) and anti-VEGF 
mAb

II Recruiting NCT02357342 Raj K. Maturi, Indianapolis, 
Indiana, USA

Fovista (pegylated PDGF‑BB aptamer) with 
aflibercept, ranibizumab or bevacizumab

II Recruiting NCT02387957 Ophthotech Corporation

NT‑503‑3 (encapsulated cells expressing 
soluble VEGFR‑1) or aflibercept

I/II Recruiting NCT02228304 Neurotech Pharmaceuticals

LM324 (anti-VEGF mAb) or ranibizumab I/II Recruiting NCT02398500 Alcon Research

Exudative AMD Proton beam radiation and anti-VEGF 
antibody

I/II Recruiting NCT01213082 University of California, Davis, 
USA

*Trial terminated after completion of phase I owing to issues with the infusion delivery system. AMD, age-related macular degeneration; mAb, monoclonal 
antibody; PDGF, platelet-derived growth factor; PlGF, placental growth factor; VEGF, vascular endothelial growth factor.
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delivery of a low dose of VEGF reduced neuronal loss 
and mutant huntingtin aggregation in both in vitro and 
in vivo models of HD77. In the same study, however, a 
high dose of VEGF caused vascular leakage, astrogliosis 
and neuroinflammation, illustrating the importance of 
treatment dosage to elicit beneficial effects.

Parkinson disease. Parkinson disease (PD) is a degen‑
erative disorder, primarily affecting movement, that 
results from degeneration and death of dopaminergic 
neurons78. Besides neuron-intrinsic causes, vascular 
perturbations might contribute to the pathogenesis of 
PD. VEGF expression by glial fibrillary acidic protein- 
positive astrocytes is increased in the substantia nigra 
and basal ganglia in PD79–81. Probably as a consequence, 
patients with PD exhibit increased microvascular den‑
sity80,81, but also have abnormally shaped blood vessels 
and a leaky BBB in the substantia nigra82–86. As a result 
of the BBB dysfunction, reactive astrocytes and micro‑
glia release proinflammatory, proapoptotic cytokines 
that compromise dopaminergic neuron survival and 
further aggravate BBB disruption in a positive feedback 
mechanism80 (FIG. 3c).

In 6‑hydroxydopamine (6‑OHDA) neurotoxin- 
mediated preclinical models of PD, AAV-mediated 
VEGF overexpression or implantation of encapsu‑
lated VEGF-secreting cells in the striatum decreases 
amphetamine-induced rotational behaviour and pre‑
serves tyrosine hydroxylase-positive neurons in the 
substantia nigra, indicating a neuroprotective effect of 
VEGF87–90. This neuroprotection is attributable to a dual 
effect of VEGF on neural cells and blood vessels. VEGF 
promotes survival of dopaminergic neurons in vitro, and 
in vivo delivery of VEGF induces angiogenesis and glial 
proliferation, which may, respectively, improve perfu‑
sion and release of neurotrophic factors, in particular, 
GDNF87–90. However, the effects of VEGF are contextual 
and dose-dependent: the benefit is largest at low VEGF 
doses, and higher doses evoke excessive angiogenesis 
and brain oedema89.

Combined delivery of VEGF and GDNF to the 
striatum of rats after induction of 6‑OHDA lesions 
was found to be superior to monotherapy with either 
factor alone91–93. In addition, preclinical studies in ani‑
mal models of PD have shown that transplantation of 
VEGF-expressing stem cells provides higher therapeu‑
tic benefits than transplantation of non-modified stem 
cells, by protecting damaged dopaminergic neurons and 
stimulating their regeneration94,95. In one such study, 
VEGF-expressing umbilical cord mesenchymal stem 
cells were infused into the striatum of rotenone-lesioned 
hemiparkinsonian rats95. This intervention ameliorated 
apomorphine-evoked rotations in the animals, and the 
transplanted cells showed evidence of differentiation into 
dopaminergic neuron-like cells in the substantia nigra.

A functional role for VEGF‑B in PD has also been 
documented. VEGF‑B has been shown to protect mid‑
brain neurons from rotenone or 6‑OHDA-induced 
neurotoxicity96,97, but only when administered before 
lesion induction, suggesting a neuroprotective rather 
than a neurorestorative function96,98.

In PD, blood vessels in the subthalamic nucleus (STN) 
degenerate, and STN neurons, which provide excitatory 
innervation to the substantia nigra dopaminergic neu‑
rons, become hyperactive99,100. Postmortem analysis of 
patients with PD who received STN deep brain stimu‑
lation showed enhanced levels of VEGF and increased 
density of microvessels with a tighter BBB in the STN99. 
High cervical spinal cord stimulation in PD rats induced 
VEGF expression in the striatum, concomitant with 
improved behavioural outcome and preservation of 
dopaminergic neurons that project to this region101. 
Although the precise molecular mechanisms remain 
unknown, VEGF-mediated angiogenic and/or neuro‑
protective activity might contribute to the beneficial  
effects of these interventions in PD.

Peripheral neuropathies. Peripheral neuropathies are 
characterized by degeneration of peripheral motor, 
sensory and/or autonomic axons, leading to a plethora 
of symptoms, including muscle weakness and wasting, 
numbness, paraesthesia, pain and/or organ dysfunction, 
depending on the type of axon affected102,103. Peripheral 
axonopathy is a common complication in patients with 
diabetes mellitus and limb ischaemia, or in patients 
receiving chemotherapy, but it can also be genetic in 
nature.

In the case of diabetes, neuropathy is associated with 
basement membrane thickening and blood–nerve barrier 
breakdown104. In vitro, advanced glycation end products 
cause pericyte degeneration, and also induce transform‑
ing growth factor β release, which results in basement 
membrane thickening, thereby impeding oxygen dif‑
fusion to the surrounding pericytes and axons105,106. 
In diabetic neuropathy and models of chemotherapy- 
induced neuropathy, blood–nerve barrier disruption 
may be partially attributable to reduced levels of the 
tight junction protein claudin‑5 (REFS 105,106) (FIG. 4). 
Moreover, the density of the vasa nervorum — the ves‑
sels that nourish axons in peripheral nerves — is reduced, 
thereby compromising nerve blood perfusion102,107–109 
(FIG. 4). Probably owing to the resultant hypoxia, VEGF 
expression is elevated in Schwann cells and neurons in a 
rat model of diabetic neuropathy110,111. High glucose con‑
centrations increase production of VEGF but reduce pro‑
duction of soluble VEGFR‑1 (a VEGF trap) by Schwann 
cells and dorsal root ganglion neurons in vitro, thereby 
increasing the levels of free VEGF112.

In accordance with the idea of hypoperfusion of the 
peripheral nerves, several studies suggest that VEGF 
can exert a therapeutic effect through improvement of 
vascular function. Intramuscular VEGF-plasmid deliv‑
ery was shown to alleviate peripheral neuropathy after 
hindlimb ischaemia by mitigating axonal degeneration 
and improving nerve recovery via enhanced vasculari‑
zation and perfusion113. Similar beneficial effects were 
seen in rat models of diabetes or chemotherapy-induced 
neuropathy102.

Besides its vascular effects, VEGF also exerts neuro
protective effects on peripheral nerve axons. In vitro, 
VEGF-activated signalling through VEGFR‑2 was found 
to protect dorsal root ganglion sensory neurons from the 
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effects of paclitaxel or hyperglycaemia, through induction 
of Hsp90 deacetylation and resultant elevation of anti
apoptotic Bcl‑2 (REFS 114,115). Furthermore, neuronal 
overexpression of VEGFR‑2 in mice reduced the sensitiv‑
ity to paclitaxel-induced peripheral neuropathy, whereas 
a dominant-negative form of VEGFR‑2 had the opposite 
effect, independently of vascular changes114. VEGF also 
stimulates the migration and survival of Schwann cells113. 
As already mentioned, defective VEGF signalling might 
also contribute to CMT2D, an inherited peripheral neu‑
ropathy caused by mutations in the gene encoding GlyRS. 
Through competitive binding of mutant GlyRS to NRP‑1, 

VEGF–NRP‑1 signalling in neurons is impaired, thereby 
promoting axonal degeneration22. Notably, the VEGF165b 
isoform, which counteracts the vascular effects of VEGF165a 
(REFS 116,117), protects neurons against chemotherapy- 
induced cytotoxicity via activation of VEGFR‑2 and 
MEK1/2 and inhibition of caspase‑3 (REF. 118). This  
isoform also alleviated pain in diabetic rats119.

Similar protective effects are seen for VEGF‑B: 
mice lacking VEGF‑B or functional VEGFR‑1 exhibit 
more-pronounced paclitaxel-induced neuropathy, and 
neuronal expression of VEGF‑B or VEGFR‑1, or treat‑
ment with recombinant VEGF‑B, can protect against 
neuropathy120. A fraction of patients with cancer develop 
peripheral neuropathy as an adverse effect of chemo‑
therapy or anti-VEGF therapy114,121. Administration of 
VEGF isoforms with neuroprotective but no vascular 
effects, such as VEGF-B or VEGF165b, might be attractive 
for these patients, as these isoforms do not induce angio‑
genesis and, thus, are unlikely to promote cancer growth.

In the clinical setting, intramuscular injection of 
VEGF-encoding plasmid improved ischaemic neuro
pathy in patients with leg ischaemia122, and alleviated 
the symptoms in patients with diabetic neuropathy123. 
Intramuscular delivery of VEGF-expressing plasmids is 
also being clinically evaluated for peripheral nerve injury 
(TABLE 1).

VEGF in other neurological diseases
Besides its neuroprotective effects in neurodegenerative 
disease, VEGF has roles in various other neurological dis‑
eases, including stroke, trauma, epilepsy and multiple  
sclerosis (MS). Pathologically elevated VEGF levels 
can contribute to disease pathology by inducing BBB 
breakdown and vascular leakage, thereby exposing the 
brain to harmful substances from the blood, increas‑
ing the influx of inflammatory cells and, potentially, 
exacerbating hypoxia, which can reinforce VEGF secre‑
tion in a feedback loop. In ocular neovascular diseases, 
increases in VEGF secretion in the retina cause vascu‑
lar leakage and overgrowth as the primary pathologi‑
cal mechanism. The current state of VEGF targeting 
for the treatment of ocular neovascular diseases is 
described in BOX 2.

Brain injuries. Stroke and traumatic brain injuries 
(TBIs) are leading causes of death and long-term mor‑
bidity. Ischaemic stroke results from occlusion of a 
cerebral artery, causing infarction of the irrigated tis‑
sue. The necrotic core is surrounded by the penumbra, 
which is still viable but at risk of further decay without 
rapid reperfusion (FIG. 5a). Ischaemia also has a major 
role in haemorrhagic stroke and TBI. Pathophysiological 
responses to stroke and TBI include excitotoxicity, oxi‑
dative damage and inflammation, leading to neuron 
death. VEGF has contextual effects that can be both 
beneficial and deleterious in these conditions (FIG. 5). 
Beneficial effects include an increase in collateral ves‑
sel formation, vasodilation, angiogenesis, and neuro‑
protection124,125 (FIG. 5b). By contrast, high VEGF levels, 
resulting from upregulation by severe ischaemia or from 
systemic VEGF administration, may aggravate tissue 

Figure 4 | Vasa nervorum loss in diabetic peripheral neuropathy. a | Normal 
peripheral nerve architecture with intact vasa nervorum. Permission obtained from Pocket 
Dentistry http://pocketdentistry.com/25-traumatic-injuries-of-the-trigeminal-nerve/.  
b | Intact vasa nervorum providing normal blood flow to a healthy nerve. c | Peripheral 
neuropathy associated with diabetes might result in part from destruction of the 
endoneurial vasa nervorum. Pericyte degeneration and basement membrane thickening 
impede oxygen transfer to perivascular axons, ultimately leading to destruction of the 
nerve vasculature. The resulting reduction in nerve perfusion leads to axonal 
dysfunction and degeneration. Vascular endothelial growth factor therapy alleviates 
diabetic peripheral neuropathy, possibly via a combination of direct neuroprotection 
and improvement of nerve perfusion by vasa nervorum revascularization.
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damage through an increase in BBB leakage, leading to 
poststroke brain oedema and life-threatening intracranial 
hypertension125,126.

In mice, VEGF is upregulated after injury, owing to 
tissue hypoxia, oxidative stress and inflammation127–130. 
Patients with stroke or TBI have elevated VEGF levels in 
serum and cerebrospinal fluid, respectively, and higher 
baseline VEGF levels are associated with increased risk 
of stroke131–133. Elevated VEGF levels contribute to early 
stroke pathology, including BBB breakdown, vascular 
leakage and oedema. Oedema increases intracranial 
pressure, which further increases ischaemia by obstruct‑
ing blood vessels (FIG. 5c). Moreover, BBB disruption by 
VEGF increases extravasation of glutamate and albumin, 
which activates astrocytes and perturbs K+ homeostasis 
in the brain parenchyma, leading to neuronal hyper‑
activity and stress134 (FIG. 5c). Consistent with these 
observations, VEGF administration shortly after stroke 
increases vascular leakage and brain infarction, whereas 
VEGF blockade early after stroke reduces brain oedema 
and infarct size125,126.

VEGF also has beneficial effects in stroke. By induc‑
ing vasodilation, VEGF improves perfusion and, hence, 
preservation of the penumbra135,136. At a later stage, VEGF 
is neuroprotective and ameliorates vascular dysfunction 
(FIG. 5b). Indeed, delayed VEGF treatment at 48 h after 
stroke stimulates angiogenesis without inducing vessel 
leakage, and improves recovery of neurological func‑
tions125, probably by stimulating neuroprotection137,138, 
reparative angiogenesis125 (FIG. 5b) and neurogenesis 
(BOX 1). This finding could explain why VEGF is ben‑
eficial when administered after the acute phase139, and 

administration of the anti-VEGF antibody bevacizumab 
exacerbates brain necrosis and neurological deficits140. 
Of note, VEGF levels during physiological growth influ‑
ence stroke outcome in the adult, as elevated VEGF 
levels promote the formation of collaterals that bypass 
occluded vessels and reduce infarct areas19,20 (FIG. 5b).

An outstanding question is how to improve the safety 
of VEGF therapy after stroke. Although similar benefi‑
cial effects of VEGF administration were confirmed in 
independent studies, adverse effects were also reported, 
particularly when VEGF was given systemically124. One 
attractive possibility is to use the VEGF homologue 
PlGF, which, on overexpression in the brain, improves 
angiogenesis without adverse effects141. Alternatively, 
moderate upregulation of endogenous VEGF expres‑
sion by means of an engineered zinc finger transcrip‑
tion activator protein homing to the VEGF promoter 
(VEGF-ZFP‑TF) can reduce neuronal apoptosis and 
improve recovery from neurological deficits after 
TBI142. Another possibility is the use of VEGF-derived 
molecules that separate vascular from neuronal effects. 
For instance, in rodent models of CNS ischaemia, QK, 
a VEGF-derived peptide that partly mimics the VEGF 
binding domain on VEGFR‑2, and the VEGF splice iso‑
form VEGF165b, which is neuroprotective but lacks angio
genic activity, were both shown to be neuroprotective 
without causing oedema118,143,144.

Neuroprotection in ischaemic brain diseases can be 
also achieved through chronic activation of hypoxia sig‑
nalling, which results in increased expression of VEGF, 
among other protective factors. This is accomplished 
by reducing the activity of the cellular oxygen sensors 
of the HIF prolyl hydoxylase family (PHDs), by induc‑
ing mild hypoxia, or by pharmacological blockade or 
genetic deletion of PHDs. All three approaches confer 
neuroprotection after stroke, and several PHD inhibi‑
tors are in clinical development, but the mechanisms of 
neuroprotection remain unclear145–150. Genetic deletion 
or inhibition of PHD1 or PHD2 can protect neurons 
against ischaemic stroke, but via different mechanisms: 
HIF-independent metabolic reprogramming in the 
case of PHD1 inhibition, and HIF-dependent induction 
of hypoxia target genes in the case of PHD2 loss146,150. 
Inhibition of PHD2 also reduces neuronal activity and 
synaptic transmission, warranting caution for global 
PHD inhibition in the human brain151.

Stimulation of NSC proliferation by VEGF con‑
tributes to its beneficial properties (BOX 1), mostly via a 
bystander effect, similar to that of bone marrow mono‑
nuclear cells (BM‑MNCs) transplanted after stroke152. In 
this setting, VEGF increases the homing of BM‑MNCs 
to the brains of rats with chronic hypoperfusion, and 
promotes functional recovery, despite vascular leakage153. 
Together, these data suggest a therapeutic window for 
VEGF-based therapies after brain injuries to safeguard 
neuronal survival and tissue regeneration, but care 
should be taken to avoid vascular leakage and inflam‑
mation, which exacerbate tissue damage. Dissociation 
of the neurogenic and neuroprotective properties of 
VEGF from its effects on vascular permeability might 
represent a therapeutic avenue for future investigation.

Box 2 | VEGF family members in ocular disease

Vascular endothelial growth factor (VEGF) family members have prominent roles in 
neovascular ocular diseases. Diabetic retinopathy and the wet form of age-related 
macular degeneration (AMD) are characterized by vascular overgrowth and leakiness, 
and retinal oedema and inflammation. VEGF and placental growth factor (PlGF) levels 
correlate with ocular neovascularization in both conditions, and decrease on successful 
treatment184,185. Rodent and primate studies indicate that VEGF or PlGF delivery or 
overexpression in the eye induces choroidal neovascularization (CNV) and diabetic 
retinopathy-like vascular defects186–188, whereas inhibition or loss of VEGF or PlGF 
reduces CNV and diabetic retinopathy in preclinical models184,189,190.

Anti-VEGF therapies have emerged as treatments for AMD, diabetic macular oedema 
and proliferative diabetic retinopathy. Most clinical trials tested inhibitors of VEGF 
signalling, including pegaptanib, bevacizumab, ranibizumab and aflibercept (TABLE 1). 
However, nearly 50% of patients receiving intravitreal anti-VEGF exhibited residual 
ocular oedema, prompting trials of add‑on therapies (TABLE 1). Several trials found 
beneficial effects of the broader-acting aflibercept in patients who became refractory 
to ranibizumab or bevacizumab191. Apart from a higher affinity for VEGF, the superior 
effect of aflibercept may relate to its inhibition of PlGF. In a mouse CNV model, genetic 
or pharmacological PlGF blockade inhibited CNV and enhanced the effects of 
VEGF-targeted inhibitors192,193. Unlike VEGF inhibitors, anti-PlGF antibodies can be 
safely administered systemically, and they inhibit ocular neovascularization without 
adverse effects192.

In vitro experiments indicate a direct effect of VEGF on retinal neurons via VEGFR‑2–
PI3K–Akt signalling194,195, and neuronal cell death has been observed after inhibition of 
VEGF signalling. In a streptozotocin-induced diabetic rat retina model, intravitreal 
injection of an anti-VEGF antibody led to increased numbers of apoptotic retinal 
ganglion cells, and of amacrine and bipolar cells196. Furthermore, chronic inhibition of 
VEGF function in adult mice resulted in significant loss of retinal ganglion cells194. 
Therefore, anti-VEGF therapies must be used with caution to treat ocular diseases.
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Epilepsy. Epilepsy is characterized by seizures due to 
synchronized neuronal activity after TBI, stroke, brain 
tumours or brain infection, or through genetic causes. 
Seizures induce VEGF expression and BBB breakdown 
in the rodent hippocampus and in patients with epi‑
lepsy154,155. The degree of BBB breakdown correlates 
with seizure burden in mice, and BBB disruption can 
provoke seizures in rodents156,157. BBB disruption allows 
diffusion of ions and neurotransmitters into the brain 
parenchyma, causing increased neuron excitability. 
In addition, leaked plasma albumin is taken up by 
astrocytes, triggering downregulation of K+ channels, 
which impairs clearance of extracellular K+. Elevated 
K+ levels depolarize neurons, thereby increasing excit‑
ability. Furthermore, release of cytokines and VEGF by 
astrocytes and microglia, activated in response to BBB 
leakage, aggravates BBB disruption and sustains epi‑
leptogenic inflammation158 (FIG. 6). Reduction of BBB 
breakdown through antivascular therapy might, there‑
fore, represent a viable antiepileptogenic therapy. Indeed, 
analysis in hippocampal slices has shown that seizures 

stimulate VEGFR‑2 signalling and angiogenesis while 
impairing BBB tightness — effects that are counteracted 
by anti-VEGF antibodies159.

VEGF also seems to be neuroprotective in the epi‑
leptic brain, as VEGF administration reduces neuronal 
apoptosis after seizure induction159–161. Also, infusion of 
a low dose of VEGF that does not induce angiogene‑
sis reduces neuronal loss after seizure induction, and 
improves learning160,161. Moreover, neuronal VEGFR‑2 
overexpression augments the discharge threshold and 
reduces seizure duration162. Conversely, neuronal loss 
is exacerbated when the VEGF-trapping VEGFR‑1–Fc 
fusion protein is administered after seizure induction 
in vivo161. As in stroke, these data imply a dual effect of 
VEGF in epilepsy, on the one hand inducing BBB break‑
down and vascular leakage, thereby contributing to  
seizures, but on the other hand offering neuroprotection.

Demyelinating diseases. Multiple sclerosis (MS) is 
an autoimmune disease of the CNS, characterized 
by an inflammatory attack by immune cells against 

Figure 5 | Role of VEGF in stroke. a | Occlusion of brain vessels causes a brain infarct (black) that is surrounded by a still 
viable but at‑risk penumbra (red). b | Beneficial effects of vascular endothelial growth factor (VEGF). VEGF levels during 
development determine the abundance of collaterals that can bypass occluded vessels and reduce infarct areas. Delayed 
treatment with VEGF can activate angiogenesis that supports tissue repair in the penumbra, or increase neuronal survival by 
directly activating VEGFR‑2‑mediated neuroprotection. c | Deleterious effects of VEGF. Excessive VEGF levels, particularly 
early after the infarct, might adversely affect stroke recovery via increased vascular leakage, oedema, obstruction of supply 
vessels through elevated interstitial pressure, and life-threatening intracranial hypertension. Increased leakage can transform 
the insult into a haemorrhagic infarct. Moreover, VEGF-induced blood–brain barrier (BBB) breakdown in the penumbra 
can damage neurons directly via disturbance of ion homeostasis and entry of inflammatory cells. EC, endothelial cell.
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oligodendrocytes, leading to demyelination, oligoden‑
drocyte death and, ultimately, neuronal death in perivas‑
cular lesions (FIG. 7). Neuromyelitis optica (NMO) is 
another, more rare autoimmune disease, preferentially 
targeting aquaporin‑4 (a molecule involved in water 
transport into the cell) in BBB astrocytes in the optic 
nerve and spinal cord (FIG. 7). Vascular leakage and BBB 
breakdown are hallmarks of MS and NMO163,164, and 
they facilitate trafficking of immune cells and molecules 
into the brain parenchyma.

Patients with MS or NMO exhibit elevated serum 
VEGF levels165–167. As VEGF is a vessel permeability fac‑
tor, increased levels of this protein render the BBB more 
leaky, thereby facilitating invasion of immune cells that 
target oligodendrocytes and BBB astrocytes in MS and 
NMO, respectively. Activated microglia secrete inflam‑
matory cytokines, such as IL‑1β, which augment VEGF 
release by astrocytes168,169. This process creates a vicious 
circle, whereby VEGF further increases vascular leaki‑
ness, thereby aggravating immune cell infiltration and 
inflammation, which, in turn, reinforce VEGF expression. 
Inflammation then kills oligodendrocytes or BBB astro‑
cytes, leading to neurodegeneration owing to insufficient 
glial support (FIG. 7).

Evidence suggests that targeting of aberrant VEGF 
expression in brain autoimmune disease might augment 
immunosuppressive therapeutic strategies. In experi‑
mental autoimmune encephalomyelitis, an animal model 
of MS, VEGF blockade reduced brain inflammation and 
demyelination and suppressed angiogenesis, although 
effects on BBB permeability were not reported170. Though 
exciting, these findings require confirmation, as bevaci‑
zumab, an anti-human VEGF antibody that only mini‑
mally neutralizes mouse VEGF, was used to block VEGF 

in these preclinical experiments. Recently, bevacizumab 
has been evaluated in a clinical trial in patients with 
NMO (TABLE 1).

Therapeutic implications
Recent efforts to better understand the spectrum of 
effects of VEGF in the aforementioned neurological 
diseases have created novel therapeutic opportunities. 
However, any pro-VEGF or anti-VEGF therapeutic 
strategy should be carefully tailored to each neurological 
disorder, given that VEGF can either provide neuropro‑
tection or promote BBB disruption, depending on the 
context. Nevertheless, as indicated in the sections above, 
administration or inhibition of VEGF and its family 
members has provided benefit in preclinical models of 
several neurological disorders.

Ocular diseases with neovascularization are the only 
neurovascular disorders for which VEGF inhibition 
has been clinically approved. Ongoing clinical trials are 
attempting to improve therapy based on VEGF inhibi‑
tion, by testing novel VEGF blocking agents or combi‑
nations of VEGF inhibition with other treatments. By 
contrast, no established VEGF-based therapies exist for 
the treatment of other neurological diseases. In preclin‑
ical studies, VEGF or VEGF‑B protein or gene therapy, 
alone or combined with neurotrophic factors, delayed 
disease onset or reduced neurological symptoms in 
rodent models of neurodegenerative diseases such as 
ALS45–49,51, AD72,73, HD76,77 and PD87–93,95,96,99, and also had 
beneficial effects in epilepsy159–161 and stroke125,135,136. In 
addition, VEGF gene therapy improved peripheral neur
opathy symptoms in patients with ischaemic or diabetic 
neuropathy122,123. The exact mechanisms underlying 
the beneficial effects in the aforementioned disorders 

Figure 6 | Vascular dysfunction in epilepsy. a | An intact blood–brain barrier (BBB) prevents egress of blood-borne 
substances into the brain tissue, safeguarding normal neuronal activity and brain homeostasis in the healthy brain. b | BBB 
disruption in epileptic tissue allows K+ ions and neurotransmitters such as glutamate to diffuse into the brain parenchyma, 
causing neuronal hyperactivity. Extravasated plasma albumin is taken up by astrocytes, leading to downregulation of K+ 
channels, which results in impaired clearance of extracellular K+. Release of cytokines and vascular endothelial growth 
factor (VEGF) by neurons, astrocytes and microglia further promotes BBB disruption.
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are not well defined, but improved vascular perfusion,  
neurotrophic effects and/or enhanced release of neuro‑
trophic factors might be at play. In stroke, stimulation of 
neurogenesis could also contribute.

The efficacy and safety of pro-VEGF or anti-VEGF 
therapy will depend on clear definitions of the optimal 
dose, timing and delivery route for each indication. 
Dosing is critical, as a high VEGF dose poses risks of 
BBB disruption, brain oedema and neuroinflammation, 
as shown in models of HD and PD77,89. Similarly, tim‑
ing of treatment initiation is relevant, as illustrated by 
the deleterious effects on BBB integrity of early but not 
delayed VEGF treatment in stroke125,126,139. The use of 
VEGF‑B, which is less angiogenic than VEGF but still 
exerts neuroprotective effects, or of the VEGF splice 
isoform VEGF165b, which has neuroprotective but no 
angiogenic activity, may partially circumvent these prob‑
lems and allow more flexibility in dosing and timing of 
treatment initiation. Strategies that lead to upregula‑
tion of endogenous VEGF — for example, inhibition of  
prolyl hydroxylases146,150, or engineered transcriptional 
activators that home to the VEGF promoter — might 
also be considered, as they yield normal relative expression 
of VEGF splice isoforms, and could avoid deleterious 
effects associated with overexpression of a single VEGF 
isoform.

Distinct administration routes may have to be con‑
sidered for different neurological disorders, depending 
on the features of the particular disease, for example, 
ICV delivery for ALS and stroke45, intramuscular deliv‑
ery for ALS and peripheral neuropathy46,50,107,122, and 
systemic administration for stroke2. Local and systemic 
delivery might yield different outcomes, as shown for 
VEGF treatment of stroke: ICV administration was ben‑
eficial, whereas systemic delivery had negative effects2. 
The delivery route must be tailored to the disease of 
interest, and will be co‑determined by the ability of the 
drug to cross the BBB.

VEGF treatment for ALS in preclinical models illus‑
trates the importance of identifying the optimal pharma‑
cokinetics for VEGF treatment in neurological disease. 
Pharmacokinetic analysis and tracing experiments, 

Figure 7 | VEGF as a mediator of neuroinflammatory 
disease. a | Healthy brain vessels possess a functional 
blood–brain barrier (BBB) to support the cells of the 
surrounding brain parenchyma, while protecting it from 
immune cells and harmful substances in the blood.  
b | At early stages of neuroinflammatory disease, vessel 
barriers become weakened, allowing egress of immune 
cells that attack targets such as aquaporin-4‑positive 
BBB-associated astrocytes in the case of neuromyelitis 
optica (NMO), or oligodendrocytes in multiple sclerosis 
(MS). Activated microglia secrete IL‑1β, which induces 
vascular endothelial growth factor (VEGF) expression in 
astrocytes. c | Prolonged VEGF elevation increases 
angiogenic sprouting and causes breakdown of the BBB, a 
hallmark of advanced stages of neuroinflammatory disease. 
Inflammatory reactions against the respective target cells 
(BBB-associated astrocytes in NMO; oligodendrocytes in 
MS) cause death of the target cells and secondary 
neuronal apoptosis.
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using 125I-radiolabelled VEGF (125I-VEGF), showed that 
VEGF failed to cross the BBB, and ICV administration 
resulted in diffusion: within 1 h, up to 70% of the injected 
VEGF had accumulated in the brain parenchyma, as con‑
firmed by autoradiography45. 125I-VEGF was also detected 
in the spinal cord, showing a rostrocaudal gradient that 
gradually diminished from the site of injection towards 
the lumbar spinal cord45. Clearance of VEGF from the 
cerebrospinal fluid occurred within 3 h, hence, con‑
tinuous infusion of VEGF using osmotic mini-pumps 
was employed. Further experiments demonstrated that 
injected VEGF remained stable for several hours, and was 
anterogradely transported along motor axons, consist‑
ent with preservation of neuromuscular junctions in ALS 
rats45. Intramuscular injection of VEGF with demon‑
strable retrograde axonal transport produced beneficial 
effects in an ALS mouse model47. However, the pharma
cological characteristics of pro-VEGF or anti-VEGF 
therapy are poorly defined for most other neurological 
disorders. More-detailed preclinical characterization 
of pharmacokinetics, distribution and stability will be 
instrumental for translation to human trials.

Patients with neurological disorders involving BBB 
breakdown or excessive angiogenesis, such as demyeli‑
nating diseases170 or ocular disease (BOX 2), might benefit 
from anti-VEGF therapy. The VEGF-neutralizing anti‑
body bevacizumab is being tested for safety in patients 
with NMO, and several advanced trials to optimize 
anti-VEGF approaches in retinal and other ocular dis‑
eases are in progress (TABLE 1). Administration of VEGF-
neutralizing agents in ocular disease involves repeated 
intravitreal injection, but patient-tailored dosing reg‑
imens that attempt to maximize the risk:benefit ratio, 

thus alleviating therapy burden while retaining efficacy, 
are already being used with good clinical results171,172. 
Development of systemically deliverable agents, such  
as anti-PlGF, or orally available small molecules, such as 
the VEGFR and platelet-derived growth factor receptor 
inhibitor X-82, could further greatly reduce treatment 
discomfort for patients with ocular disease and other 
neurological conditions.

Overall, treatment of neurological diseases based on 
pro-VEGF or anti-VEGF strategies is relatively recent and 
still evolving. Critical issues regarding dose, timing, deliv‑
ery route, frequency and treatment interval will need to be 
addressed to ensure optimal treatment efficacy and safety.

Conclusions
Research over the past 20 years has identified multi‑
ple roles for VEGF in brain function and pathology. 
In many cases, the role of VEGF not only depends on 
its canonical role as a regulator of angiogenesis and  
vascular permeability, but also suggests a direct role in 
neuronal protection. When considering the clinical use 
of VEGF as a neuroprotective agent, its ability to evoke 
BBB breakdown and vascular leakage should be taken 
into account. Conversely, when attempting to inhibit 
VEGF, attention should be paid to the possible dele‑
terious effects of blocking its neuroprotective activity. 
In the future, it will be vital to unravel the downstream 
signalling mechanisms of VEGF that selectively regu‑
late vessel permeability and neuroprotection, so as to 
therapeutically manipulate these processes separately. 
Investigation of VEGF homologues or isoforms with 
selective neuroprotective actions, such as VEGF-B and 
VEGF165b, will also be important.
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